Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Machine learning (ML) methods, particularly Reinforcement Learning (RL), have gained widespread attention for optimizing traffic signal control in intelligent transportation systems. However, existing ML approaches often exhibit limitations in scalability and adaptability, particularly within large traffic networks. This paper introduces an innovative solution by integrating decentralized graph-based multi-agent reinforcement learning (DGMARL) with a Digital Twin to enhance traffic signal optimization, targeting the reduction of traffic congestion and network-wide fuel consumption associated with vehicle stops and stop delays. In this approach, DGMARL agents are employed to learn traffic state patterns and make informed decisions regarding traffic signal control. The integration with a Digital Twin module further facilitates this process by simulating and replicating the real-time asymmetric traffic behaviors of a complex traffic network. The evaluation of this proposed methodology utilized PTV-Vissim, a traffic simulation software, which also serves as the simulation engine for the Digital Twin. The study focused on the Martin Luther King (MLK) Smart Corridor in Chattanooga, Tennessee, USA, by considering symmetric and asymmetric road layouts and traffic conditions. Comparative analysis against an actuated signal control baseline approach revealed significant improvements. Experiment results demonstrate a remarkable 55.38% reduction in Eco_PI, a developed performance measure capturing the cumulative impact of stops and penalized stop delays on fuel consumption, over a 24 h scenario. In a PM-peak-hour scenario, the average reduction in Eco_PI reached 38.94%, indicating the substantial improvement achieved in optimizing traffic flow and reducing fuel consumption during high-demand periods. These findings underscore the effectiveness of the integrated DGMARL and Digital Twin approach in optimizing traffic signals, contributing to a more sustainable and efficient traffic management system.more » « less
- 
            Large-scale traffic simulations are necessary for the planning, design, and operation of city-scale transportation systems. These simulations enable novel and complex transportation technology and services such as optimization of traffic control systems, supporting on-demand transit, and redesigning regional transit systems for better energy efficiency and emissions. For a city-wide simulation model, big data from multiple sources such as Open Street Map (OSM), traffic surveys, geo-location traces, vehicular traffic data, and transit details are integrated to create a unique and accurate representation. However, in order to accurately identify the model structure and have reliable simulation results, these traffic simulation models must be thoroughly calibrated and validated against real-world data. This paper presents a novel calibration approach for a city-scale traffic simulation model based on limited real-world speed data. The simulation model runs a microscopic and mesoscopic realistic traffic simulation from Chattanooga, TN (US) for a 24-hour period and includes various transport modes such as transit buses, passenger cars, and trucks. The experiment results presented demonstrate the effectiveness of our approach for calibrating large-scale traffic networks using only real-world speed data. This paper presents our proposed calibration approach that utilizes 2160 real-world speed data points, performs sensitivity analysis of the simulation model to input parameters, and genetic algorithm for optimizing the model for calibration.more » « less
- 
            The public commute is essential to all urban centers and is an efficient and environment-friendly way to travel. Transit systems must become more accessible and user-friendly. Since public transit is majorly designed statically, with very few improvements coming over time, it can get stagnated, unable to update itself with changing population trends. To better understand transportation demands and make them more usable, efficient, and demographic-focused, we propose a fast, multi-layered transit simulation that primarily focuses on public transit simulation (BTE-Sim). BTE-Sim is designed based on the population demand, existing traffic conditions, and the road networks that exist in a region. The system is versatile, with the ability to run different configurations of the existing transit routes, or inculcate any new changes that may seem necessary, or even in extreme cases, new transit network design as well. In all situations, it can compare multiple transit networks and provide evaluation metrics for them. It provides detailed data on each transit vehicle, the trips it performs, its on-time performance and other necessary factors. Its highlighting feature is the considerably low computation time it requires to perform all these tasks and provide consistently reliable results.more » « less
- 
            When electrified transit systems make grid aware choices, improved social welfare is achieved by scheduling charging at low grid impact locations and times causing reduced loss, minimal power quality issues and reduced grid stress. Electrifying transit fleet has numerous challenges like non availability of buses during charging, varying charging costs, etc., that are related the electric grid behavior. However, transit systems do not have access to the information about the co-evolution of the grid’s power flow and therefore cannot account for the power grid’s needs in its day to day operation. In this paper we propose a framework of transportation-grid co-simulation analyzing the spatio-temporal interaction between the transit operations with electric buses and the power distribution grid. Real-world data for a day’s traffic from Chattanooga city’s transit system is simulated in SUMO and integrated with a realistic distribution grid simulation (using GridLAB-D) to understand the grid impact due to the transit electrification. Charging information is obtained from the transportation simulation to feed into grid simulation to assess the impact of charging. We also discuss the impact to the grid with higher degree of Transit electrification that further necessitates such an integrated Transportation-Grid co-simulation to operate the integrated system optimally. Our future work includes extending the platform for optimizing the charging and trip assignment operations.more » « less
- 
            null (Ed.)In projects centered around rare event case data, the challenge of data comprehension is greatly increased because of insufficient data for deriving insight and analysis. This is particularly the case with traffic crash occurrence, where positive events (crashes) are rare and, in most cases, no data set exists for negative events (non-crashes). One method to increase available data is negative sampling, which is the process of creating a negative event based on the absence of a positive event. In this work, four negative sampling techniques are presented with varying ratios of negative to positive data. These types of techniques are based on spatial data, temporal data, and a mixture of the two, with the data ratios acting as class balancing tools. The best performing model found was with a negative sampling technique that shifted temporal information and had an even 50/50 data split, with an F-1 score, a formulaic combination of precision and recall, of 93.68. These results are promising for Inteligent Transportation Systems (ITS) applications to inform of potential crash locations in an entire area for proactive measures to be put in place.more » « less
- 
            Autonomous vehicle (AV) fleet management is one of the major aspects of AV development that needs to be standardized before AV deployment. There has been no consensus on whether AV deployment in general will be beneficial or detrimental in terms of road congestion. There are similarities between packet transmission in computer networks and AV transportation in road networks. In this work, the authors argue that congestion avoidance algorithms used in computer networks can be applied for AV fleet management. Authors modify and evaluate a novel adaptation of additive increase and multiplicative decrease (AMID) congestion avoidance algorithm. The authors propose assigning different priorities to transportation tasks in order to facilitate sharing the limited resources in such as usage of the road network. This will be modeled and assessed using a queueing model based on AVs arrival distribution. This will result in a load balancing paradigm that can be used to share and manage limited resources. Then, by using numerical study authors merge congestion avoidance and load balancing to analyze the authors' scheme in term of road network throughput (number of cars in network for a given time) for AV fleet management. Their evaluation demonstrates the improvement in terms of road network throughput.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
